unstable equilibrium - определение. Что такое unstable equilibrium
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое unstable equilibrium - определение

Unstable equilibrium; Stable equilbrium

Linear stability         
In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form \frac{dr}{dt} = A r, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part. If all the eigenvalues have negative real part, then the solution is called linearly stable.
Equilibrium point         
CONSTANT SOLUTION TO A DIFFERENTIAL EQUATION
Equilibrium points; Equilibrium solution; Point of Equilibrium
In mathematics, specifically in differential equations, an equilibrium point is a constant solution to a differential equation.
Competitive equilibrium         
ECONOMIC EQUILIBRIUM CONCEPT
Walrasian equilibrium; Competitive Equilibrium
Competitive equilibrium (also called: Walrasian equilibrium) is a concept of economic equilibrium introduced by Kenneth Arrow and Gérard Debreu in 1951K. Arrow, ‘An Extension of the Basic Theorems of Classical Welfare Economics’ (1951); G.

Википедия

Linear stability

In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form d r / d t = A r {\displaystyle dr/dt=Ar} , where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part. If all the eigenvalues have negative real part, then the solution is called linearly stable. Other names for linear stability include exponential stability or stability in terms of first approximation. If there exist an eigenvalue with zero real part then the question about stability cannot be solved on the basis of the first approximation and we approach the so-called "centre and focus problem".